
Multi-Criteria Approaches to Markov Decision

Processes with Uncertain Transition Parameters

Dimitri Scheftelowitsch, Peter Buchholz
Informatik IV, TU Dortmund, Germany

{dimitri.scheftelowitsch,peter.buchholz}@cs.tu-dortmund.de

Abstract

Markov decision processes (MDPs) are a well established model for
planing under uncertainty. In most situations the MDP parameters are esti-
mates from real observations such that their values are not known precisely.
Different types of MDPs with uncertain, imprecise or bounded transition
rates or probabilities and rewards exist in the literature. Commonly the
resulting processes are optimized with respect to the most robust policy
which means that the goal is to generate a policy with the best worst case
behavior. However, implementing such a policy could lead to potential
losses of reward in most situations. In general, one is interested in policies
which behave well in all situations which results in a multi-objective view
of decision making.

In this paper we consider policies for the discounted reward of MDPs
with uncertain parameters. In particular, the approach is defined for
bounded-parameter Markov decision processes (BMDPs) [GLD00]. In
this setting the worst, best and average case performance of a policy is
analyzed. The paper presents some theoretical results and algorithms to
compute or approximate the convex hull of pure Pareto optimal policies in
the value vector space.

1 Introduction

Markov decision processes are a common tool to describe decision situations in
many different contexts, such as economy, artificial intelligence and planning
[Put94]. The general idea is to specify a system by means of different states
in which it can be, actions which a decision maker can perform to affect the
(probabilistic) future behavior, and rewards or costs that depend on the state
and decision. After an action has been chosen, the system changes its state
depending on the action and the current state but not on the past behavior;
transitions are, in general, randomized and defined by the system’s properties.

However, modeling a (physical or biological or artificial) system suffers from
several limitations, the most important of which are the inherent loss of precision
that is introduced by measurement errors and discretization artifacts which
necessarily happen due to objective limitations of measuring equipment or due
to incomplete knowledge about the system behavior. Thus, the real probability
distribution for transitions is in most cases an uncertain value which is given by
either external parameters or confidence intervals. For the latter, the Markov

1



decision process model has been extended to bounded-parameter Markov decision
processes (BMDPs) [GLD00] or the slightly more general classes of MDPs with
incomplete or uncertain transition rates [SL73, WE94]. In these classes of MDPs,
best-case and worst-case policies for the expected discounted reward measure
have been considered.

Apart from the upper and lower bounds on the value vector, which follow
from the uncertainty in the transition probabilities or rewards, also expected
values can be of interest if a probability distribution for the parameters of
the MDP is available. This reasoning is motivated by the requirement to
infer not only “best-case” and “worst-case” performance but also to consider
the performance on average and give the user a possibility to pick a policy
that suits her or his preference for the best-case, worst-case and average-case
performance simultaneously. By doing so, we depart into the realm of multi-
objective optimization where more than one solution may be optimal, as solutions
can be incomparable.

1.1 Related work

For a general introduction on MDP theory and solution methods, we recommend
the book of Puterman [Put94]. The extension to bounded-parameter Markov
decision processes is introduced and widely discussed in the works of Givan
et al. [GLD00]. BMDPs are a specific subclass of MDPs with uncertain or
imprecise transition rates proposed by Satia and Lave [SL73] and White and
El-Deib [WE94]. MDPs with uncertainty have been extended even further, our
results also apply to convex uncertainty sets discussed in [PLSVS13]. Until
today several aspects of MDPs with imprecise parameters are considered in
the literature [DSdB11, WKR13]. However, in almost all cases, the goal is to
compute some robust policy which assures the best possible behavior in the
worst case.

We analyze MDPs with parameter uncertainty in the context of multi-
objective optimization which allows us to simultaneously optimize the worst,
best and average case behavior. Solution methods for multi-objective Markov
decision processes are discussed in [WdJ07, Whi82, CMH06, BN08, PW10].
Furthermore, in this work, we use results for stochastic games; their properties
are widely discussed in the textbook [FV96]; the extension to multi-objective
stochastic games is introduced in [CFK+13].

1.2 Our Contribution

In this paper we consider MDPs with uncertain parameters and in particular
BMDPs as multi-objective optimization problems. The classes are slightly
extended by adding expected parameter values in addition to bounds. In this
setting we introduce methods to compute or approximate the set of Pareto
optimal pure policies. We show the relation between this set and the set of all
Pareto optimal policies. In contrast to general multi-objective optimization of
MDPs, the multi-objective goal function of a BMDP has an additional structure
since the value function has ordered components which can be exploited when
computing optimal policies.

2



1.3 Structure of the Paper

The paper is structured as follows. In the next section we introduce the basic
definitions and some first results. Section 3 describes optimization of the multi-
objective goal function relative to a weight vector. Afterwards the multi-objective
approach is introduced under different assumptions. Section 5 introduces al-
gorithms to compute (sub)sets of Pareto optimal policies. We propose three
algorithms computing different subsets of the set of Pareto optimal policies.
Afterwards a small example is presented. The paper ends with the conclusions
and a summary of future work for multi-objective BMDPs.

2 Definitions and first steps

First we introduce common notation and formalisms used in this paper.

Notation For a matrix M , we denote by mi,j the entry in row i and column
j. Vector identifiers, such as v, appear in bold script, to distinguish them
from scalars and matrices. For a natural number n, by [n] we designate the
set {1, 2, . . . , n}. For multi-dimensional identifiers, such as matrices or vectors,
the order relations ≤ or ≥ mean “less than or equal in all components” or,
respectively, “greater than or equal in all components”.

We begin with the definition of Markov reward processes which are the basic
stochastic process resulting from a MDP and a fixed policy.

Definition 1 (Markov reward process). A Markov reward process (MRP) is
a tuple (S, P, r), where S = [n] is the (finite) state space, P ∈ Rn×n (P ≥ 0,
P I1 = I1) is a stochastic transition matrix and r ∈ Rn,1≥0 is a non-negative reward
vector.

For an initial state s1 ∈ S, a MRP defines a sequence of random variables
(Xt)t∈N where X1 = s1, and Xi+1 for i ∈ N is selected subject to the probability

distribution Pr
[
Xi+1 = s | Xi = s′

]
= ps,s′ . Furthermore, it defines a sequence

of random variables Ri (i ∈ N) where Ri = rs for Xi = s. Xi is the i-th state
and Ri the i-th reward. We consider here only MRPs and also MDPs with finite
state spaces.

A Markov decision process defines in principle a set of MRPs where a decision
maker can select a suitable MRP.

Definition 2. A Markov decision process is a tuple (S,A, T,R) where S = [n]
is a (finite) set of states, A = [m] is finite set of actions, R : S ×A→ R≥0 is a
set of m reward vectors, and T =

{
P 1, . . . , Pm

}
⊂ Rn×n is a set of m transition

matrices with P i ≥ 0 and P i I1 = I1.

For a sequence of actions (at)t∈N ∈ A, a MDP defines sequences of random
variables (Xt)t∈N and (Rt)t∈N where X1 = s1 is the initial state, and Xi+1 for i ∈
N is chosen subject to the probability distribution Pr

[
Xi+1 = s | Xi = s′, ai

]
=

pais,s′ ; furthermore, Rt is defined as Rt = R(Xi, ai).
In the following discussion, we need individual rows of the transition matrix

and define for a transition matrix P and state s, ps as the s-th row of P .
To optimize the performance of a MDP, a decision rule or policy is needed.

Formally, a policy is a function f : SN ×A→ R that maps (finite) histories of
states to probability distributions on the action space. We call a policy f

3



• stationary if it depends only on the current state,

• deterministic if it always maps a history to a Dirac distribution, i.e.,
f(·, a) ∈ {0, 1},

• pure if it is stationary and deterministic,

• mixed if it is stationary, but not pure.

It is easy to see that a stationary policy π induces a Markov reward process with
transition matrix P (π) and reward vector r(π), as the transition probabilities
under π depend only on the current state. We denote by pπs row s of Pπ and by
rπs the reward of state s under policy π.

States of MRPs or MDPs often describe an aggregated view of the real
system such that the Markov property (i.e., the homogeneous and memoryless
transition probabilities) is only approximately correct and transition probabilities
and rewards are estimates resulting from measurements or the opinion of some
experts. This implies that there is always uncertainty about the parameters of
the model and also about the behavior of the real system according to some
policy that has been derived from the MDP. The class of bounded-parameter
MDPs (BMDPs) introduced in [GLD00] includes this uncertainty by considering
intervals rather than point estimates for the parameters of MDPs. BMDPs
contain implicitly a definition of a bounded-parameter MRP (BMRP).

Definition 3 (Bounded-parameter Markov decision/reward process [GLD00]).
A bounded-parameter Markov reward process (BMRP) is a tuple (S, Pl, rl)
where S = [n] is a (finite) set of states, Pl = (P↓, P↑), 0 ≤ P↓ ≤ P↑, P↓ I1 ≤
I1 ≤ P↑ I1, and r = (r↓, r↑), 0 ≤ r↓ ≤ r↑. A BMRP defines a set of MRPs(
(S, P, r)|P↓ ≤ P ≤ P↑, P I1 = I1, r↓ ≤ r ≤ r↑

)
.

Analogously, a bounded-parameter Markov decision process (BMDP) is a
tuple (S,A, Tl, Rl) where S = [n] is a (finite) set of states, A = [m] is (finite)

set of actions, Rl =
(

((r1↓, r
1
↑), . . . , (r

m
↓ , r

m
↑ )
)

is a set of m reward vector pairs,

and Tl =
(

(P 1
↓ , P

1
↑ ), . . . , (Pm↓ , P

m
↑ )
)

is a set of m matrix pairs. For each a ∈ A,

(S, P al , r
a
l) is a BMRP.

We denote by pas ∈ pasl all vectors pas such that pas,s′↓ ≤ pas,s′ ≤ pas,s′↑
for all s′ ∈ [n] and

∑n
s′=1 p

a
s,s′ = 1. Similarly ra ∈ ral specifies all vector ra

such that ras↓ ≤ ras ≤ ras↑. BMDPs define upper and lower bounds for the
transition probabilities and rewards and allow one to analyze the worst and
best case behavior. Additionally, we wish to take the “average performance”
into consideration and extend the formalism with a probability measure on the
possible transition matrices and reward vectors.

Definition 4 (Stochastic bounded-parameter Markov decision/reward process).

For a bounded-parameter Markov reward process
(
S, Pl, rl

)
and a probability

density function Pr on Pl, rl, a stochastic bounded-parameter Markov reward

process (SMRP) is the tuple
(
S, Pl, rl,Pr

)
. By adding a probability measure

on the transition matrices for each action and the rewards, a stochastic bounded-
parameter Markov decision process (SBMDP) is defined as (S,A, Tl, Rl, P r)
.

4



The expected discounted reward for an infinite horizon is taken as performance
metric. For an arbitrary sequence of rewards (rt)t∈N and a discount factor
γ ∈ [0, 1), the sum ρ =

∑
t∈N γ

t−1rt defines the discounted reward. Since the
rewards generated by a given Markov decision process are bounded and the
discount factor is smaller than 1, the sum converges to a finite value. For a MDP
and a state s ∈ S, a given policy f defines a sequence of transition matrices(
P

(f)
t

)
t∈N

and reward vectors
(
r
(f)
t

)
t∈N

where P
(f)
t resp. r

(f)
t is the transition

matrix resp. the reward in the t-th time step. Using this sequence, we can derive
a probability distribution on sequences of states and corresponding rewards,
from which the expected discounted reward can be defined as

Ex

∑
t∈N

(
γt−1r

(f)
t

) =
∑
t∈N

γt−1Ex
[
r
(f)
t

]
.

By computing the expected discounted reward for all states, one obtains a value
vector v where each entry equals the expected discounted reward one obtains
starting from the respective state. The mathematical properties of expected
discounted rewards on which we shall rely in the sequel are widely discussed
in [Put94].

We assume that the goal is the maximization of the discounted reward. For
a BMDP policies assuring best and worst case behavior can be determined by
solving the following Bellman equations.

vs↓ = maxa∈A

(
ras↓ + minpas∈pasl

(
pasv↓

))
vs↑ = maxa∈A

(
ras↑ + maxpas∈pasl

(
pasv↑

)) (1)

As shown in [GLD00] the minimum and maximum inside the equations can be
solved easily for BMDPs such that the computation of the vectors v↓ and v↑ is a
standard MDP problem which can be solved with value iteration, policy iteration
or linear programming [Put94]. The optimal policies are pure and denoted as π↓
and π↑, respectively.

In the extended model (cf. Definition 4) we are additionally interested

in the “average-case” properties of a SBMDP
(
S,A, Tl, R, Pr

)
and a policy

that maximizes the performance under the “average-case” assumption. The
reasoning here is fairly straightforward: Since the probability distribution for
the transition matrices is known, we can define for each action a ∈ A, P

a
=

Ex [P a] =
∫
Pal

P · pa(P ) dP and ra = Ex[ra] =
∫
ral

r · pa(r) dr. The Bellman

equations become
vs = maxa∈A (ras + pasv) (2)

which is a standard MDP problem. The optimal policy is pure and is denoted
as π. For some policy f , by vf↓ , vf↑ and vf we designate the lower, upper and

average value vectors. Obviously vf↓ ≤ vf ≤ vf↑ and also v↓ ≤ v ≤ v↑ hold.
Usually the policies π↓, π↑ and π differ and a compromise between two or all
three goals have to be found. We consider in the sequel mainly policies that
simultaneously consider v↓ and v but the corresponding approaches can be easily
extended to two other vectors or to all three or even more vectors. Before we
introduce different approaches to handle the problem, a few remarks should be
made.

5



Extended models The BMDP framework is not the only way to describe
parameter uncertainty in Markov decision processes. An alternative is to pa-
rameterize the uncertainty sets of transition matrices with variables λ1, . . . , λk
such that for each state s and each action a, there is a function hs,a : Rk → Rn
that maps the parameter space to a set of stochastic vectors. By restricting the
functions hs,a to simple classes, such as linear or affine functions, one can handle
this perspective in a similar fashion to the one presented in this paper although
the computation of the minimum or maximum in (1) might be more complex
and requires in extreme cases the solution of an LP problem itself.

Continuous time models We consider here MDPs in discrete time. MDPs in
continuous time can be transformed into discrete time MDPs using uniformization
[Ser79]. The resulting discrete time MDP shows an equivalent behavior with
respect to the discounted reward. In a similar way, it is possible to transform
BMDPs in continuous time into discrete time BMDPs using uniformization. We
will not formalize the approach here but keep in mind that continuous time
models can be handled as well with the following approaches.

Mixed policies The most evident approach here is to compute separate
policies, an optimal policy π for the expected Markov decision process, a worst-
case optimal one π↓ and a best case optimal policy π↑ for the stochastic BMDP.
Then, it is possible to define a mixed policy by defining a probability vector
q = (q↓, q, q↑) (q↓+q+q↑ = 1). The mixed policy πq is the policy which, in every
state, chooses with probability q↓ the action defined by π↓, with probability q
the action define by π and with probability q↑ the action defined by π↑. This
seems to be a reasonable decision which seems to define a compromise between
worst, average and best case. This is indeed the case for certain processes, e.g.
if several expected values are considered [CMH06]. However, if the worst and
best case behavior is analyzed, the resulting mixed policy is usually is provably
suboptimal since it results in the minimum of the worst and best case rewards
of all three policies.

We show the mentioned effect by means of a small example where we consider
only the average and worst case. Consider, for an arbitrary small ε > 0, a
BMDP with four states, a reward vector r = (0, 2 + 2ε, 1, 0)

T
that is shared by

all actions, and two actions given by the transition matrices

P 1
l =




0 λ 0 1− λ
0 1 0 0
0 0 1 0
0 0 0 1

 | λ ∈ [0, 1]

 , P 2
l =




0 0 1 0
0 1 0 0
0 0 1 0
0 0 0 1




where λ is uniformly distributed on [0, 1]. It is easy to see that choosing the
second action in state 1 is pessimistically optimal; the optimal average-case
policy will, however, choose the first action in state 1. The resulting rewards are
(r1, r1↓) = (1+ε, 0) and (1, 1) for choosing the first and second action, respectively.
A mixed policy will choose the first action in state 1 with probability q and thus,
risk to gain a reward of zero with combined probability q

2 over the values of λ
and the result of the coin toss. One can see that with the combined policy, one
can only (deterministically) guarantee the lower bounds that result from the
average-case policy while the pessimistically optimal policy will only be used

6



with a certain probability. Thus, mixed policies that rely on probabilistic choices
cannot deliver strong deterministic performance guarantees. This is different
from models with several expected rewards as in [CMH06] where mixed policies
can be applied to reach convex linear combinations of the value vectors resulting
from pure policies.

3 Optimization relative to a weight vector

To overcome the limitations of the naive mixing approach discussed in the precious
section, we propose a derivation from value iteration by introducing a weight
or preference vector w. We assume that we have G different goals represented
by value vectors. Then w has G components and wg ≥ 0,

∑G
g=1 wg = 1. Thus,

we build a convex linear combination of the value vectors. Specifically consider

a stochastic BMDP
(
S,A, Tl, Rl, P r

)
and a discount factor γ ∈ [0, 1). We

optimize two value vectors, v↓ and v simultaneously, by computing, for each
state s ∈ S and the previously fixed weight w ∈ [0, 1],

a∗s = arg max
a∈A

w (ras + γpas · v) + (1− w)

(
ras↓ + γ min

pas∈pasl
pas · v↓

) (3)

and derive from the decisions new value vectors

v = rπ
∗

+ γP
π∗ · v, v↓ = rπ

∗

↓ + γ min
Pπ∗∈Pπ∗l

Pπ
∗
· v↓. (4)

where π∗ = (a∗1, . . . , a
∗
n). These steps define an iterative procedure and we show

that the mapping

K(v1,v2)(s) :=

(
ra
∗

s + γpa
∗

s v1, r
a∗

s↓ + γ min
pa∗s ∈pa

∗
s l

pa
∗

s v2

)

converges and that the (pure) policy π∗ that corresponds to its fixed point is
optimal.

Lemma 1. The mapping K as defined above is a contraction mapping for
non-negative value vectors.

Proof. First, for any norm ‖·‖ on Rn and a positive real weight w ∈ (0, 1), we
define a mapping ‖x,y‖+,w on R2n as w‖x‖+ (1− w)‖y‖. We show that this

mapping is a norm on R2n, as it is, using the norm properties of‖·‖, for all a ∈ R
and all x,y ∈ Rn,

• ‖ax, ay‖+,w = w‖ax‖+(1−w)‖ay‖ = aw‖x‖+a(1−w)‖y‖ = a‖x,y‖+,w.

• ‖x,y‖+,w = 0 ⇔ w‖x‖ + (1 − w)‖y‖ = 0 ⇔ x = y = 0, as norms are
always greater than zero if and only if the value is different from zero.

• ‖x1 + x2,y1 + y2‖+,w = w‖x1 + x2‖+(1−w)‖y1 + y2‖ ≤ w‖x1‖+w‖x2‖+
(1− w)‖y1‖+ (1− w)‖y2‖ =‖x1,y1‖+,w +‖x2,y2‖+,w.

7



As an auxiliary function, we define

L(v1,v2)(s, a) := w
(
ras + γpasv1

)
+ (1− w)

(
ras↓ + γ min

pas∈pasl
pas · v2

)
Let s ∈ S be an arbitrary state. Then we consider the expression

max
a∈A

L(u1,u2)(s, a)−max
a∈A

L(v1,v2)(s, a)

which is the basis for computing
∥∥K(u1,u2)−K(v1,v2)

∥∥
+,w

. This term is a

special case of the expression maxx f(x)−maxy g(y) for two functions f, g : X →
R on some set X. By definition, it is maxx f(x)−maxy g(y) ≤ maxx f(x)−g(y) =
maxx

(
f(x)− g(y)

)
, for all y ∈ X. By setting y = x, we obtain the general

inequality maxx f(x) − maxy g(y) ≤ maxx
(
f(x)− g(x)

)
, which justifies the

following operations.

max
a∈A

L(u1,u2)(s, a)−max
a∈A

L(v1,v2)(s, a)

≤max
a∈A

(
L(u1,u2)(s, a)− L(v1,v2)(s, a)

)
≤wmax

a∈A
γ [pasu1 − pasv1] + (1− w) max

a∈A
γ

[
min

pas∈pasl
pasu2 − min

pas∈pasl
pasv2

]
≤γ
(
w‖u1 − v1‖+ (1− w)‖u2 − v2‖

)
≤γ
∥∥(u1,u2)− (v1,v2)

∥∥
+,w

From these computations it also follows that for (w1,w2) = K(u1,u2) −
K(v1,v2), it is w‖w1‖ ≤ γw‖u1 − v1‖ and (1− w)‖w2‖ ≤ γ(1− w)‖u2 − v2‖.
Hence, we can derive the contraction property∥∥K(u1,u2)−K(v1,v2)

∥∥
+,w
≤ γ

∥∥(u1,u2)− (v1,v2)
∥∥
+,w

For the cases w = 0 or w = 1 the desired properties also hold: For w = 0,
the algorithm reduces itself to the standard value iteration and for w = 1, the
algorithm reduces itself to interval value iteration. In both cases, the contraction
mapping properties have been shown [Put94, GLD00].

To prove correctness, we show now that the optimal policy (relative to the
chosen measure) is the fixed point of the value iteration scheme.

Theorem 1. The fixed point of K is an optimal value vector relative to the
weighted sum of the average-case and the worst-case transition probabilities
v∗ = (v∗1,v

∗
2) and the corresponding policy π∗.

Proof. The existence of the fixed point follows from Banach’s fixed point theorem
and Lemma 1 that shows that K is a contraction mapping.

Suppose for the sake of contradiction that for u = K(v∗), u 6= v∗. Then
there exists a state s ∈ S such that us 6= v∗s . Now we can consider several cases.

Case 1 If the policy π that results from application of K is the same as the by
assumption optimal policy π∗, then we interpret the BMDP under π as a a
BMRP; thus, v∗ is the value vector of a BMRP if and only if v∗ satisfies the

equation v∗ =

(
r(π) + γP

(π)
v∗1, r

(π)
↓ + γminP (π)∈P (π)l

P (π)v∗2

)
. Thus, in

this case u 6= v∗ leads to a contradiction.

8



Case 2.1 If the fixed-point policy π and vector u∗ = (u∗1,u
∗
2) that result from

the application of K are different from π∗ and v∗ and it is wv∗s,1 + (1−
w)v∗s,2 < wu∗s,1 + (1 − w)u∗s,2, then π′, the policy that results from one
application of K to v∗ is a policy that delivers a higher sum of worst-case
and average-case rewards and thus, π∗ cannot be the optimal policy.

Case 2.2 If the fixed-point policy π and vector u∗ = (u∗1,u
∗
2) that result from

the application of K are different from π∗ and v∗ and it is wv∗s,1 + (1−
w)v∗s,2 > wu∗s,1 + (1 − w)u∗s,2, then there is an action a ∈ A such that

w (ras + γpas · v∗1)+(1−w)
(
ras↓ + γminpas∈pasl pas · v∗2

)
> wv∗s,1+(1−w)v∗s,2.

However, then it follows that the updated policy π′ with action a in state
s is better than π∗, as π∗ was chosen to be optimal for all choices of P (π).
This is a contradiction to the assumption that π∗ is the policy for which,
in every state, and thus also in state s, the sum wv∗s,1 + (1 − w)v∗s,2 is
maximal.

As we can see, the proposed policy iteration scheme converges to a unique
value vector with the maximal sum of the worst-case and expected rewards. With
such a policy, one can guarantee a lower bound for the sum of the worst-case
and the average-case value vectors. Furthermore, the convergence properties
are, as with all contraction mappings, such that the fixed point will be reached
after a polynomial number of iterations, for a polynomial number of bits in the
representation of a number. It is easy to see that one application of K can
be evaluated in polynomial time, so, the total time complexity of this policy
iteration-based procedure is polynomial. We note that this does not contradict
the NP-hardness result of [CMH06] for multi-objective MDPs since the hardness
result is shown for the problem of deciding if there is a policy whose value vector
v dominates a given vector w.

Corollary 1. Optimizing the weighted sum of the minimal and the expected
discounted total rewards can be done in polynomial time in the size of the BMDP1.

As a side result, we observe that the resulting optimal policies are pure. This
means that the convex hull of Pareto optimal policies, i.e., of the policies whose
value vectors are not dominated by value vectors of other policies is spanned by
pure policies.

With this result, it is possible to compute policies that are, in a sense,
controllably robust, i.e., have a performance measure that incorporates the worst-
case as well as the best-case performance. To extend our discussion further, it is
possible to include the upper bound of the value vector as a third component of
the performance measure. It is easy to see that the reasoning used above also
applies for the upper bound component, and thus, we can compute policies that
also consider the best-case expected discounted reward.

1The size of the BMDP is measured in n ·m and the complexity of computing maxpas∈pa
sl

which can be done with an effort in O (n) for BMDPs

9



4 Multi-Objective Approaches

An intuitive expansion of the preceding discussion is to generalize the considered
problem as a variant of a multi-objective Markov decision process problem,
with the components being the worst-case, best-case, or average-case expected
discounted rewards. It is tempting to consider known techniques for multi-
objective optimization in this context.

For a given weight (3) and (4) describe a variant of value iteration which
converges to a optimal pure policy. We denote the corresponding policy as
πw. However, if w is not known a priori, one is usually interested in the set
of pure policies which are optimal for some weight vector. More formally, let
W = {w = (w↓, w, w↑)|w ≥ 0,w I1 = 1} the set of weight vectors and let Ppure
be the set of pure policies. Then define

Pweight =
{
π|π ∈ Ppure∃w ∈ W : π = πw

}
as the set of pure policies that are optimal for some weight vector. Furthermore,
define

PPareto ={
π|π ∈ Ppure,¬∃π′ ∈ Ppure : vπ↓ ≤ vπ

′

↓ ∧ vπ ≤ vπ
′
∧ vπ↑ ≤ vπ

′

↑ ∧(
vπ↓ 6= vπ

′

↓ ∨ vπ 6= vπ
′
∨ vπ↑ 6= vπ

′

↑

)}
the set of pure policies that result in Pareto optimal value vectors. It is easy
to see that Pweight ⊆ PPareto ⊆ Ppure holds and usually the subsets are proper
subsets. We denote by Vweight, VPareto and Vpure be the corresponding sets of
value vectors.

Often the convex hull of Pareto optimal policies is considered in multi-
objective MDPs (e.g., in [CMH06, BN08]). The assumption in those approaches
is that a randomized policy which probabilistically chooses an action from one of
several Pareto-optimal pure policies results in a value vector that is given by the
convex linear combination of the value vectors of the pure policies. However, this
only holds if several expected values are considered in a multi-objective setting.
In our case we have for two pure policies π, π′ ∈ PPareto with value vectors
(vπ↓ ,v

π,vπ↑ ) and (vπ
′

↓ ,v
π′ ,vπ

′

↑ ) that are combined to a randomized policy π̃ which
selects with probability q ∈ (0, 1) an action from policy π and with probability

(1− q) an action from policy π′ that vπ̃ = qvπ + (1− q)vπ
′
, vπ̃↓ = min

(
vπ↓ ,v

π′

↓

)
and vπ̃↑ = max

(
vπ↓ ,v

π′

↓

)
where the minimum and maximum are computed per

state. Thus, the worst case and also best case behavior does not profit form
randomized policies which makes them less attractive in our case.

It is of interest to consider a related, but different problem: Given minimal
average and worst-case value vectors (u,u↓), does there exist a pure policy
π such that vπ ≥ u and vπ↓ ≥ u↓? It has been shown in [CMH06] that the
corresponding decision problem is NP-hard for general multi-objective MDPs
where different expected values are computed. The following theorem shows that
the hardness result also holds for SBMDPs even if rewards do not depend on
the chosen action.

Theorem 2. The problem of deciding existence of a pure policy π for a given
bounded-parameter Markov decision process that delivers a worst-case expected

10



discounted reward v
(π)
↓ and an average-case expected discounted reward v(π) such

that v
(π)
↓ ≥ v1,v

(π) ≥ v2 for given vectors v1,v2 is NP-complete.

Proof. The stated problem is obviously in NP because the evaluation of a
policy for a BMDP can be done in polynomial time. As for NP-hardness, we
show a reduction from the subset sum problem. Given a subset sum instance
M = {m1, . . . ,mn} we construct a BMDP and two vectors v1,v2 such that there

is a policy π with v
(π)
↓ ≥ v1,v

(π) ≥ v2 if and only if there is a subset I ⊆ [n]

such that
∑
i∈I mi = 1

2

∑n
i=1mi.

The BMDP which we shall construct will have a pre-defined discount factor
γ, 4n + 1 states which have the identifiers t and qi, si, s↓i, s↑i for i ∈ [n]. The
general idea of the reduction is the following: The MDP shall proceed through
all states qi and end up in the absorbing state t. In the state qi, it shall be
possible to choose between the (adjusted for the discount factor) reward pairs
(2mi, 0) and (mi,mi) with the first component being the average case and the
second component being the worst case part. This way, a pure policy π will
induce a subset I ⊆ [n] such that the total reward, if one starts in state q1,

will be
(∑n

i=1mi +
∑
i∈I mi,

∑
i 6∈I mi

)
. Technically, we model this by enabling

two actions in states qi, a and b. These actions do not generate rewards, but
lead to different outcomes: The action a leads to the state si unconditionally
with reward 0, and all actions from si lead to the state qi+1 with reward mi

γ2i−1 .

The action b leads to either s↓i or s↑i, with probability in the interval [0, 1]; all
actions from these two states lead, in turn, to qi+1, and the difference between
s↓i and s↑i lies in the reward: the reward in s↓i is 0, the reward in s↑i is 4mi

γ2i−1 .
Finally, we define the expected discounted rewards we would like to get with

a pure policy π, it should be 1
2

∑
i∈[n]mi in the worst case and 3

2

∑
i∈[n]mi in

the average case.

qi

s↑is↓i

si

qi+1

b, 0

a, 0

p = 1
·, mi
γ2i−1 , p = 1

p ∈ [0, 1]p ∈ [0, 1]

·, 4mi
γ2i−1 , p = 1

·, 0, p = 1

Figure 1: Construction from Theorem 2

It is easy to see that the construction can be done in polynomial time. We
want now to show correctness. For every subset I ⊆ [n] we define a policy πI with
πI(qi) = a if i ∈ I and πI(qi) = b if i 6∈ I. The expected discounted total reward
for policy π in state q1 will then be

∑
i∈I γ

2i−1 · mi
γ2i−1 +

∑
i∈[n]\I γ

2i−1 · 2mi
γ2i−1 =

11



∑
i∈[n]mi +

∑
i∈[n]\I mi in the average case and

∑
i∈I γ

2i−1 · mi
γ2i−1 =

∑
i∈I mi

in the worst case. If there is a subset I ⊆ [n] such that
∑
i∈I mi =

∑
i∈[n]\I mi,

then there is a policy πI that delivers the requested expected discounted rewards.
Furthermore, as any pure policy π induces a subset I ⊆ [n] by defining i ∈
I ⇔ π(qi) = a, the existence of a pure policy π with the requested expected
discounted rewards implies the existence of a subset with sum 1

2

∑
i∈[n]mi.

Up to now we have only considered optimal stationary policies and in our
setting pure policies are of special importance. However, if we allow general
policies which consider the history, then additional Pareto optimal solutions
may be found. This will be shown by a simple example (shown in Fig. 2). The
SBMDP has two states, in state 1 one can choose between action a and b. If a is
selected the process goes with probability p, which is uniformly [0, 1] distributed,
into state 2 and stays with probability 1 − p in state 1. If b is selected, then
the process makes with probability q, which is uniformly [0.5, 0.7] distributed, a
transition to state 2 and stays with probability 1− q in state 1. From state 2
the process always returns to state 1 with probability 1 no matter which action
has been chosen. The reward vector is ra = rb = (1, 0)T .

1

2

a[0, 1], b[0.5, 0.7]

*[1, 1]

Figure 2: Simple example BMDP

Since decisions in state 2 are irrelevant, we have two pure policies namely (a)
which chooses always action a and (b) that chooses always b. Obviously, (a) is
better for maximizing the average reward and b is better for the worst case reward.

For γ = 0.9 the corresponding values are va =
(
va1 , v

a
1↓

)
= (6.8966, 5.2632) and

vb =
(
vb1, v

b
1↓

)
= (6.4935, 6.1350). Both vectors are Pareto optimal. Now

consider the non-stationary polices ab and ba which collect alternating sequences

of the actions a and b. We have vab =
(
vab1 , v

ab
1↓

)
= (6.7024, 5.2632) and

vba =
(
vba1 , v

ba
1↓

)
= (6.6398, 5.5913). vab is dominated by va whereas vba is

another Pareto optimal vector which cannot be reached with any stationary
policy. By extending the history, we obtain additional Pareto optimal policies.

We define Popt as the set of Pareto optimal policies. In general Popt can be
an infinite set but since decisions k steps apart receive a discounting factor γk,
the influence past decisions vanishes exponentially. Again we denote by Vopt the
set of value vectors belonging to policies from Popt.

12



5 Computation of Optimal Policies

The computation of Pareto optimal policies in multi-objective MDPs is a challenge
since the number of optimal policies can be large or even infinite. Several papers
consider methods to compute or approximate the Pareto set (e.g., [PW10, BN08,
CMH06, Whi82, WdJ07, RWO14]) but most of the methods can only be applied
to small processes. Furthermore, the methods consider the computation of
several expected values. In SBMDPs we have the worst and best case vectors
which are harder to compute.

As in the single objective case, in principle value iteration, policy iteration or
linear programming [Put94] can be applied in the multi-objective case. However,
for SBMDPs linear programming is not recommended since the computation
of minimum inside the maximum computation is not linear such that we end
up with a problem with a linear goal function but non-linear constraints. In
the cases we consider here, namely PBMDPs, the computation in the minimum
can be transformed into a set of linear constraints but the number of additional
variables is huge such that the approach becomes inefficient. In the following we
consider three algorithms to computes, respectively approximate the sets Vopt,
VPareto and Vweight. The first approach is based on value iteration, the other
two on policy iteration.

Pareto Optimal Policies from Popt: The set Vopt can be computed with
value iteration based on the results of [BN08, Whi82]. Let V be a set of
value vectors (v↓,v,v↑). Vs = {(vs↓, vs, vs↑)|(v↓,v,v↑) ∈ V } is the subset that
considers only the elements with index s from the vectors. Furthermore, we use
Vs↓ for the subset containing only the first component of (v↓, v, v↑) ∈ Vs, V s
for the set which contains only the second component and Vs↑ as the subset
containing only the third component. For a set Vs we define

popt(Vs) =
{(us↓, us, us↑) ∈ Vs|¬∃(vs↓, vs, vs↑) ∈ Vs : us↓ ≤ vs↓ ∧ us ≤ vs ∧ us↑ ≤ vs↑}

as the set of Pareto optimal pairs. Since Vs is a set, (u↓, u, u↑), (v↑, v, v↓) ∈ Vs
implies us↓ 6= vs↓ or us 6= vs or us↑ 6= vs↑.

Algorithm 1 computes an approximation of the set Vopt with a predefined error
bound. Before we prove the error bound of the algorithm, a short explanation
of the steps of the algorithm is given. The computation starts with three value
vectors which are zero. Then for each state and action pair and each pair of
value vectors that has been computed in the previous step new average and worst
case values are computed. The newly computed pairs are added to the current
set and all non-Pareto optimal pairs are removed from the resulting set (step
10). Iteration k mimics the computation of policies that consider a history of k
steps and assume that the average and worst case reward k steps before was 0 in
any state. In step 11/12 the complete set of Pareto optimal vectors is computed.
It is obviously possible to combine the value pairs per state arbitrarily because
decisions are made independently in any state. However, the set V k needs not
to be computed explicitly, it is sufficient to store the sets V ks .

The algorithm computes only the value vectors and not the optimal policies.
It can be easily extended to generate also the policies by storing action a and
vectors (v↓,v,v↑)) with the value pair u↓, u, u↑ in the steps 7− 10. In this way

13



Algorithm 1 Value iteration to approximate Vopt
1: function Pareto-opt((S,A, Tl, Rl, P r), γ)
2: initialize k = 0, V 0 = {0,0,0} ;
3: repeat
4: V ks = ∅ ;
5: k = k + 1 ;
6: for s ∈ S, a ∈ A, (v↓,v,v↑) ∈ V k−1 do
7: u↓ = ras↓ + γminpas∈pasl

(
pasv↓

)
;

8: u = ras + γpasv ;
9: u↑ = ras↑ + γmaxpas∈pasl

(
pasv↑

)
;

10: V ks = popt(V ks ∪ {u↓, u, u↑}) ;

11: V k = ×(v1↓,v1,v1↑)∈V k1 ...(vn↓,vn,vn↑)∈V kn
12: ((v1↓, . . . , vn↓)

T , (v1, . . . , vn)T , (v1↑, . . . , vn↑)
T ) ;

13: until maxerr(V k) < (ε↓, ε, ε↑) ;
14: return V k

the optimal policies, which are deterministic but consider the last k− 1 decisions
for the decision in the kth step, can be generated

The following theorem proves an error bound which is used to implement the
function maxerr.

Theorem 3. Let V k be a set of value vectors resulting from Algorithm 1. For
each (u↓,u,u↑) ∈ Vopt exists some (v↑,v,v↓) ∈ V k such that

‖u↓ − v↓‖∞ ≤ v∗↓
γk

1− γk
, ‖u− v‖∞ ≤ v∗

γk

1− γk
, ‖u↑ − v↑‖∞ ≤ v∗↑

γk

1− γk
,

where v∗↓ = maxs∈S maxv↓∈V ks↓

(
v↓
)
, v∗ = maxs∈S max

v∈V ks
(v) and

v∗↑ = maxs∈S maxv↑∈V ks↑

(
v↑
)
.

Proof. Since the policies computed in Algorithm 1 are deterministic, they can
be represented by vectors πi for the decisions in the ith (1 ≤ i ≤ k) step. Each
(v↓,v,v↑) ∈ V k results from a specific sequence π1, . . . , πk. (v↓,v,v↑) has been
computed starting with value vector (0,0,0) k steps apart. Now assume that
we start with (w↓,w,w↑) instead of (0,0,0) and use the same policy π1, . . . , πk,
then the resulting value vectors are

v↓ + γk
k∏
i=1

P (πi)w↓ ≤ v↓ + γk maxs∈S
(
ws↓

)
I1,

v + γk
k∏
i=1

P (πi)w ≤ v + γk maxs∈S (ws) I1 and

v↑ + γk
k∏
i=1

P (πi)w↑ ≤ v↑ + γk maxs∈S
(
ws↑

)
I1.

Consequently, (v↑,v,v↓) contains the discounted reward accumulated in the last
k steps and is a lower bound for the discounted reward accumulated over an
infinite number of steps. Since V k contains all Pareto optimal vectors, v∗↓ the
maximal lower bound of the accumulated reward in k steps, v∗ is the maximal

14



average reward that can be accumulated in k steps and v∗↑ the maximal upper
bound of the accumulated reward in k steps. This implies

maxs∈S
(
ws↓

)
≤
∞∑
i=0

(
γk
)i
v∗↓ = 1

1−γk v
∗
↓ ,

maxs∈S (ws) ≤
∞∑
i=0

(
γk
)i
v∗ = 1

1−γk v
∗ and

maxs∈S
(
ws↑

)
≤
∞∑
i=0

(
γk
)i
v∗↑ = 1

1−γk v
∗
↑

for every value vector (w↓,w,w↑) reachable by an arbitrary policy and also for
every value vector (w↓,w,w↑) ∈ Vopt.

Now let (u↓,u,u↑) ∈ Vopt be a Pareto optimal pair of vectors resulting from
policy f = π1, . . . , πk, . . . ∈ Popt. First, assume that π1, . . . , πk is a policy that
has been used in Algorithm 1 to compute (v↓,v,v↑) ∈ V k. Then v contains the
average reward accumulated during the last k steps by policy f . Additionally,
u contains the discounted reward accumulated in the steps more than k steps
apart. A bound for this reward is given above and this bound is weighted by γk

which results in the bound given in the theorem. With the same arguments the
bound for the worst and best case behavior can be derived.

Now assume that f = π1, . . . , πk; . . . ∈ Popt but π1, . . . , πk has not been used
to compute a vector from V k. Then (u↓,u,u↑) consists of a part (w↓,w,w↑)
that includes the reward accumulated during the last k steps and the rest which
can be bounded as in the previous case. However, since V k contains all Pareto
optimal vector with respect to the reward accumulated in k steps, it contains a
vector pair (v↓,v,v↑) with v↓ ≥ w↓, v ≥ w and v↑ ≥ w↑. These vectors plus
the bound for the reward accumulated in the steps k + 1, ... define a bound for
(u↓,u,u↑).

The definition of function maxerr follows immediately from the previous
theorem. The algorithm approximates the, possibly infinite, Pareto front by a
finite set of points with a predefined a error bound. In the worst case, the number
of value vectors and therefore the computational effort grows exponentially with
k. From a practical point of view it is, of course, impossible to implement an
exponentially growing number of policies. Therefore we consider in the following
paragraphs the computation of pure policies.

Pareto Optimal Policies from PPareto: In contrast to the previous case,
now only pure policies are considered. However, even the number of Pareto
optimal pure policies can be exponential in the size of the model since the number
of pure policies equals mn. Value iteration and policy iteration can be applied to
compute policies from PPareto and the corresponding value vectors from VPareto.
We present an algorithm based on policy iteration which outperforms value
iteration if the set PPareto is not too large and if it is possible to identify good
policies with a low effort. Both conditions hold for most practical problems.
However, in the worst case, where (almost) all pure policies are Pareto optimal,
all policies have to be evaluated to compute VPareto.

In the following algorithm we use sets PV and PV ′ that contain quadruples
(π,v↓,v,v↑) where π is the pure policy and (v↓,v,v↑) are the value vectors.
With a slight extension, we use the function popt also for these sets. Function
eval evaluates a pure policy for a SBMDP. Additionally, we use a set P where all

15



evaluated policies are stored to avoid a revaluation of a policy. Let (πlb,vlb,vlb↓ ),

(πav,vav,vav↓ ) and (πub,vub,vub↓ ) the policies and value vectors resulting from the
optimization of the lower bound, average case and upper bound of the discounted
reward, respectively. It is known that these policies belong to PPareto.

Algorithm 2 is an optimized version of a policy iteration approach to compute
PPareto and the corresponding value vectors. The algorithm is based on the
observation that if for (π,v↓,v,v↑) a state, action pair (s, a) can be found such
that for the policy π′ which results from π by setting π′s = a and π′s′ = πs for
s′ 6= s one of the three relations

ras↓ + γ min
pas∈pasl

pasv↓ > vs↓ or ras + γpasv > vs or ras↑ + γ max
pas∈pasl

pasv↑ > vs↑

holds, then for the value vectors (u↓,u,u↑) belonging to π′, u↓ > v↓ or u > v or
u↑ > v↑ holds. On the other hand, if no pair (s, a) can be found that observes the
above conditions, then π is for sure Pareto optimal in the set of pure policies. If
the new policy π′ assures all of the above relations, then u↓ > v↓ and u > v and
u↑ > v↑ such that π′ dominates π. As usual for policy iteration, the algorithm
runs until the no more policies can be found with value vectors that are Pareto
optimal with respect to the current set of value vectors. Since the number of
pure policies is finite and all evaluated policies are stored, the algorithm will
terminate.

Algorithm 2 starts with up to three policies which are known to be Pareto
optimal. In an outer loop, new policies are generated from a current set of Pareto
optimal policies. In the first inner loop, the algorithm tries to find policies that
dominate a policy collected from the current set of Pareto optimal policies. In
this way one tries to find good policies in the first iterations of the algorithms to
avoid the evaluation of too many suboptimal policies. In the second inner loop,
policies from the set of Pareto optimal policies are modified in one component,
it is checked whether the resulting policy has not been evaluated and whether it
improves the worst, average or best case reward. If this is the case, the policy
is evaluated and it is put into the set of Pareto optimal policies. Non-optimal
policies are always removed immediately from this set.

In function eval the following three sets of equations have to be solved to
compute the value vectors for some pure policy π.

u↓ = rπ↓ + γ min
P∈Pπl

(
Pπu↓

)
, u = rπ + γP

π
u and u↑ = rπ↑ + γ max

P∈Pπl

(
Pπu↑

)
The equations for the average values define a set of linear equations which can
be solved with standard means. For the vector of the worst and best case an
iterative approach is applied. Vector u↓ (or u↑) is initialized, the minimum (or
maximum) is computed and with this minimum (or maximum) a new vector
is computed which is then used to find a new minimum (or maximum). This
sequence defines a converging sequence of value vectors.

Optimal Policies from Pweight: For the computation of the set of policies
that are optimal under some weight vector (w↓, w, w↑) (w↓ + w + w↑ = 1), the
approaches from [RWO13, RWO14, RSS+14] can in principle be applied with
some slight modifications. The resulting optimization problem is bilinear with
linear constraints. The optimization problem is not convex but can usually be

16



Algorithm 2 Policy iteration to compute PPareto and VPareto
1: function Pure-opt(SBMDP = (S,A, Tl, Rl, P r), γ)

2: initialize PV = {(πlb,vlb,vlb↓ ), (πav,vav,vav↓ ), (πub,vub,vub↓ )}
3: initialize P = {πlb, πav, πub} ;
4: while true do
5: PV ′ = ∅ ;
6: PV ′′ = PV ;
7: repeat
8: remove (π,u↓,u,u↑) from PV ′′ ;
9: π′ = π ;

10: for s ∈ S and a ∈ A do
11: vs↓ = ras↓ + γminpas∈pasl pasu↓ ;

12: vs = ras + γpasu > us ;
13: vs↑ = ras↑ + γmaxpas∈pasl pasu↑ ;

14: if vs↓ > us↓ and vs > us and vs↑ > us↑ then
15: π′s = a ;

16: if π′ 6= π then
17: (v↓,v,v↑) = eval(SBMDP, π′) ;
18: PV ′′ = popt(PV ′′ ∪ {(π′,v↓,v,v↑)} ;
19: PV ′ = popt(PV ′ ∪ {(π′,v↓,v,v↑)} ;
20: P = P ∪ {π′} ;
21: else
22: PV ′ = popt(PV ′ ∪ {(π,u↓,u,u↑}) ;

23: until PV ′′ = ∅ ;
24: PV ′′ = PV ′ ;
25: for all (π,u↓,u,u↑) ∈ PV ′ do
26: for all s ∈ S and a ∈ A where πs 6= a do
27: π′ = π and π′s = a ;
28: vs↓ = ras↓ + γminpas∈pasl pasu↓ ;

29: vs = ras + γpasu > us ;
30: vs↑ = ras↑ + γmaxpas∈pasl pasu↑ ;

31: if π′ /∈ P and (vs↓ > us↓ or vs > us or vs↑ > us↑) then
32: (v↓,v,v↑) = eval(SBMDP, π′) ;
33: P = P ∪ {π′} ;
34: PV ′′ = popt(PV ′′ ∪ {(π′,v↓,v,v↑}) ;

35: if PV = PV ′′ then
36: return PV
37: else
38: PV = PV ′′;

17



solved if the dimension of the goal function is not too high which is the case for
SBMDPs with two or three dimensional goal functions.

For some weight vector w let vw = (vw
↓ ,v

w,vw
↑ ) be the optimal value vector.

Vector vw corresponds to a pure policy and can be computed with a standard
approach for solving single objective MDPs.

For the algorithm assume that for a set of weight vectors Wcur the optimal
value vectors Vcur have been computed. Let c be the cardinality of Vcur and
assume that vectors are number consecutively from 1 through c. Then wi =
(wi↓, w

i, wi↑) and vi = (vi↓,v
i,vi↑) are the i-th weight and value vector from the

sets Wcur and Vcur, respectively. Again we use the notation Vs,cur to consider
only the elements belonging to s ∈ S in the value vectors. We obtain for some
weight vector (w↓, w, w↑) and s ∈ S the following bounds

lbs(w,Vcur) = maxvs,↓,(vs,vs,↑)∈Vcur

(
w↓v

w
s,↓ + wvs + w↑vs,↑

)
≤ w↓vws,↓ + wvws + w↑v

w
s,↑

≤ max(z↓,z,z↑)∈Zs
(
w↓zs,↓ + wzs + w↑zs,↑

)
= ubs(w,Vcur)

(5)
where

Zs =
{(
z↓, z, z↑

)
| ∀w ∈ Wcur :

w↓z↓ + wz + w↑z↑ ≤ w↓vws,↓ + wvws + w↑v
w
s,↑ ∧ z↑ ≥ z ≥ z↓

}
.

The lower bound holds since Vcur ⊆ Vpure such that only valid value vectors
are considered. The upper bound holds since any valid value vector has to be
consistent with the optimal value vectors that have been computed, i.e., it cannot
result in a larger reward for one of the optimal value vectors that are known.
For some weight vector from Wcur the upper and lower bound are equal to the
exact maximum.

The functions lbs(w,V) and ubs(w,V) are piecewise linear and convex in w
for a fixed set V. Furthermore, for V ′ ⊂ V, the relations lbs(w,V) ≤ lbs(w,V ′)
and ubs(w,V) ≥ ubs(w,V ′) hold. Zs is a convex set.

The value vector vis = (vis,↓, v
i
s, v

i
s,↑) ∈ Vs,cur is optimal for weight w =

(w↓, w, w↑) and set Vs,cur, iff w↓(v
i
s,↓ − v

j
s,↓) + w(vis − vjs) + w↑(v

i
s,↑ − v

j
s,↑) ≥ 0

for all j = 1, . . . , c, j 6= i. The set of weight vectors for which vis is optimal is
also convex and the lower bound results from the product of the weight vector
w and value vector vis. The maximal difference between lower and upper bound
in this region can be computed from the following bilinear problem.

maxw,u

(
w↓u↓ + wu+ w↑u↑ −

(
w↓v

i
s,↓ + wvis + w↑v

i
s,↑

))
with the constraints

i) w↓

(
vi↓ − vj↓

)
+ w

(
vi − vj

)
+ w↑

(
vi↑ − vj↑

)
≥ 0

ii) w↓ + w + w↑ = 1

iii) w↓

(
vjs,↓ − u↓

)
+ wj

(
vjs − u

)
+ w↑

(
vjs,↑ − u↑

)
≥ 0

iv) uuparrow ≥ u ≥ u↓
for all j ∈ {1, . . . , c} \ {i}

(6)

The set of constraints i) defines a polyhedron for the weight vectors w. If we fix
w or u, then the problem becomes a linear program. This means that for a given

18



u the maximum is achieved by solving the linear program with the constraints
i and ii. This implies that the maximum can be computed with the following
steps:

1. Determine the vertices of the polyhedron defined by i) and ii).

2. Solve the linear program with constraints iii) and iv) for all w given as
a vertex of the polyhedron defined by i) and ii). The maximum is the
solutions of the problem.

The set of extremal points of the polyhedron in principle can grow exponen-
tially in the number of constraints. However, since the dimension of the problem
is only 3, the problem is usually manageable.

Algorithm 3 Algorithm to compute Pweight and Vweight
1: function Weight-opt(SBMDP = (S,A, Tl, Rl, P r), γ, ε)

2: initialize PV = {(πlb,vlb↓ ,vlb,vlb↑ , (1, 0, 0)), (πav,vav↓ ,v
av,vav↑ , (0, 1, 0)),

3: (πub,vub↓ ,v
ub,vub↑ , (0, 0, 1))} ;

4: for s ∈ S do
5: PV ′ = PV ;
6: while PV ′ 6= ∅ do
7: remove (π,v,w) from PV ′ ;
8: repeat
9: solve the optimization problem (6) and obtain (w,us) ;

10: if w(us − vs) > ε then
11: (π, (x↓,x,x↑)) = solution of MDP with weight vector w ;
12: PV = PV ∪ {(π, (x↓,x,x↑),w)} ;
13: PV ′ = PV ′ ∪ {(π, (x↓,x,x↑),w)} ;
14: else
15: us = vs ;

16: until us = vs ;

17: return PV

The complete solution approach is given in Algorithm 3. The algorithm
first solves the MDP for the extreme weight vectors, where only the average or
only the lower bound are considered. The corresponding value vectors assure
that the optimization problem (6) is bounded since u↓ ≤ vlb↓ , u ≤ vav and

u↑ ≤ vlb↑ holds then due to the set of constraints iii). Then for each state the
set of pure policies that is optimal for some weight vector is computed. In step
6 one policy is selected from the set of policies that have already been found
as optimal policies for some weight vector. The solution of the optimization
problem (6) determines an upper bound for the difference between the policy
that is known and any other policy in the range where the selected policy is
currently assumed to be optimal. If the difference is larger than some predefined
error bound ε, a new policy is computed for the weight vector that has been
determined in the optimization step. The new policy, value vectors and weight
vectors are added to the set of available policies and adds constraints to the
optimization problem. After a region has been explored for a state (lines 7-16),
the computed upper bound remains valid since constraints are added but never

19



removed. After termination of the algorithm, the result is an ε-approximation of
the set of policies from Pweight.

The effort of the algorithm depends on the number of policies that have to
be analyzed. Of course, this number can be exponential in the size of the MDP.
The solution of the optimization problem is usually not critical since the number
of variables is small. If the optimal values are only needed for some states, then
the outer for-loop can be modified to consider only the interesting states.

6 Example

The current implementation of the algorithms is a prototype that can only be
applied for very small examples. Therefore we present a first small example.
Implementation of a more efficient version of the algorithms that allows one to
analyze much larger examples is underway.

As an example we consider a simple system of a component with failures
and possible maintenance. The component can be in one of 5 state {new, good,
adequate, obsolete, unusable}. In each state three possible actions exist, namely
{ignore, maintenance, buy}. The state transition diagram of the example is
shown in Figure 3. The following table includes the bounds for the transition
probabilities in the form action, [minimum, average, maximum].

from/to new good adequate obsolete unusable

new i[0.45, 0.5, 0.6] i[0.35, 0.45, 0.5] i[0, 0.05, 0.3]
m[0.4, 0.9, 1] m[0, 0.05, 0.4] m[0, 0.05, 0.4]

b[1, 1, 1]

good b[1, 1, 1] i[0.45, 0.5, 0.6] i[0.35, 0.45, 0.5] i[0, 0.05, 0.3]
m[0.4, 0.85, 1] m[0, 0.05, 0.4] m[0, 0.05, 0.4] m[0, 0.05, 0.4]

adequate i[0.45, 0.5, 0.6] i[0.35, 0.45, 0.5] i[0, 0.05, 0.3]
b[1, 1, 1] m[0.4, 0.85, 1] m[0, 0.05, 0.4] m[0, 0.05, 0.4] m[0, 0.05, 0.4]

obsolete i[0.35, 0.7, 1.0] i[0.15, 0.3, 0.45]
b[1, 1, 1] m[0.4, 0.85, 1] m[0, 0.05, 0.4] m[0, 0.1, 0.8]

unusable i,m[1, 1, 1]
b[1.0, 1.0, 1.0]

Rewards depend on the state and action but are all exactly known. The following
table includes the expected reward vectors. We assume that the lower bound results
from the expected values multiplied by 0.8 and the upper bound results from the
expected values multiplied by 1.2.

action/state new good adequate obsolete unusable

ignore 30 28 26 20 20

maintenance 20 20 20 20 20

buy 0 0 0 0 0

For γ = 0.9 the policy (i, m, m, m, b) is optimal in the average case. However,
since the maintenance operation is unreliable and may even result in a system failure
with a relatively high probability in the worst case, also the policies (i, m, m, i, b),
(i, i, m, m, b), (i, m, i, m, b), (i, i, i, m, b) and (i, i, m, i, b) are Pareto optimal if
one considers the average and worst case behavior of the system. The Figures 4 and
5 show the location of optimal points according to the average and minimal reward
starting in the state new and according to the sum of rewards over all states. In the
latter case only 4 policies are Pareto optimal. The dashed lines indicate solutions that
are reachable by mixed policies.

20



new adequate

good

obsolete

unusablei,m,b

i,m
i,m

m,b

m

i,m

i,m

b

m

i,m

i,m

i,m

b

m

i,m

i,m

b

i,m

Figure 3: State transition diagram of the example.

The set Pweight contains only the policies (i, m, m, m, b) and (i, i, i, m, b). The
reachable rewards wvs + (1− w)vs,↓ are shown in Figure 6 for state new.

The set Popt contains an exponentially growing number of policies which cannot
be computed fro sufficiently small error bounds. Therefore it is only possible to
approximate the set which is done by restricting the number of value vectors in the
sets V k

s in Algorithm 1. For the following results up to 50 vectors are kept for state
new and up to 5 vectors are kept for the remaining states which still means that
more than 50000 value vectors are computed. 100 iterations of the value iterations are
performed resulting in error bounds ε = 0.0128 and ε↓ = 0.0094. Results are shown in
the Figures 7 and 8. It can be seen that with the use of non-stationary policies much
better compromise solutions can be found then with pure policies.

7 Conclusions

Summing up, we have presented different algorithms to analyze bounded-parameter
Markov decision processes. In contrast to known approaches [GLD00] that usually
analyze the worst case behavior and result in a variant of robust optimization, the
problem is handled here as a multi-objective problem. Of course, the price for this
extension can be an exponential complexity due to an exponential number of optimal
policies in this case. However, in practice often the number of optimal policies is
fairly small and the combination of different goal functions often allows one to find
compromise solutions with an acceptable worst case behavior combined with good
results in the average case. The problem differs from many other multi-objective
optimization approaches for MDPs where several expected values are analyzed, whereas
here expected and worst case behavior are considered together. This has for example
the consequence that randomized policies resulting from the combination of two or

21



252.5 253 253.5 254 254.5 255 255.5 256 256.5 257

183

184

185

186

187

188

vnew

v n
e
w
↓

(i, m, m, i, b)

(i, i, m, m, b)

(i, m, i, m, b)

(i, m, m, m, b)

(i, i, i, m, b)

(i, i, m, i, b)

Figure 4: Values in state new

more deterministic policies are not applicable since the worst case corresponds to the
worst case of the set of policies that are used in the approach.

For three specific problems of multi-objective optimization of MDPs computational
algorithms are presented. The algorithms are tuned for the problems but can, of course,
not avoid the exponential complexity, if the problem is exponential. However, in two
of the three cases it is possible to compute error bounds, if the algorithm is stopped
before the optimum has been reached. This is important from a practical point of view,
since usually only a relatively small number of policies can be implemented for the
practical operation of a system.

The approach presented here can be extended in various directions. As mentioned
several times it is fairly easy to consider additional goals beyond worst, average and
best cases. The algorithms can be easily extended but the complexity of multi-objective
optimization, of course, usually grows rapidly with the dimension of the problem. Our
results not only apply to bounded-parameter Markov decision processes, but can also
be utilized for Markov decision processes with convex uncertainties, as long as the
convex program min cTx subject to x ∈ C with a convex set C can be solved efficiently
[PLSVS13, NN94]. Then, the same basic algorithms can be used in order to compute
Pareto optimal policies and extreme points in the value vector space, if one adjusts
them to solve the convex program in the iteration step.

For future research, it would be interesting to extend the methods to unrestricted
stochastic games as defined in [Sha53] and other formalisms like partially observable
MDPs [Lov91]. It would be furthermore interesting to consider other optimality criteria
such as expected gain.

22



1,195 1,200 1,205 1,210 1,215
855

860

865

870

875

880

885

890

v∑

v∑
,↓

(i, i, m, m, b)

(i, m, i, m, b)

(i, m, m, m, b)

(i, i, i, m, b)

Figure 5: Values in state new

References

[BN08] Leon Barrett and Srini Narayanan. Learning all optimal policies with
multiple criteria. In William W. Cohen, Andrew McCallum, and Sam T.
Roweis, editors, ICML, volume 307 of ACM International Conference
Proceeding Series, pages 41–47. ACM, 2008.

[CFK+13] Taolue Chen, Vojtech Forejt, Marta Z. Kwiatkowska, Aistis Simaitis, and
Clemens Wiltsche. On stochastic games with multiple objectives. In
Krishnendu Chatterjee and Jiri Sgall, editors, MFCS, volume 8087 of
Lecture Notes in Computer Science, pages 266–277. Springer, 2013.

[CMH06] Krishnendu Chatterjee, Rupak Majumdar, and Thomas A. Henzinger.
Markov decision processes with multiple objectives. In Bruno Durand
and Wolfgang Thomas, editors, STACS, volume 3884 of Lecture Notes in
Computer Science, pages 325–336. Springer, 2006.

[DSdB11] Karina Valdivia Delgado, Scott Sanner, and Leliane Nunes de Barros.
Efficient solutions to factored mdps with imprecise transition probabilities.
Artif. Intell., 175(9-10):1498–1527, 2011.

[FV96] Jerzy Filar and Koos Vrieze. Competitive Markov Decision Processes.
Springer-Verlag New York, Inc., New York, NY, USA, 1996.

[GLD00] Robert Givan, Sonia M. Leach, and Thomas L. Dean. Bounded-parameter
Markov decision processes. Artif. Intell., 122(1-2):71–109, 2000.

[Lov91] William S. Lovejoy. Computationally feasible bounds for partially observed
Markov decision processes. Operations Research, 39(1):162–175, 1991.

[NN94] Yurii Nesterov and Arkadii Nemirovskii. Interior-Point Polynomial Al-
gorithms in Convex Programming. Society for Industrial and Applied
Mathematics, 1994.

23



0 0.2 0.4 0.6 0.8 1

180

190

200

210

220

230

240

250

260

w

w
v
n
e
w

+
(1
−
w

)v
n
e
w
,↓

(i, m, m, m, b)

(i, i, i, m, b)

Figure 6: Values in state new

[PLSVS13] Alberto Puggelli, Wenchao Li, Alberto L. Sangiovanni-Vincentelli, and
Sanjit A. Seshia. Polynomial-time verification of PCTL properties of MDPs
with convex uncertainties. In Natasha Sharygina and Helmut Veith, editors,
CAV, volume 8044 of Lecture Notes in Computer Science, pages 527–542.
Springer, 2013.

[Put94] Martin L. Puterman. Markov Decision Processes: Discrete Stochastic
Dynamic Programming. John Wiley & Sons, Inc., New York, NY, USA,
1994.

[PW10] Patrice Perny and Paul Weng. On finding compromise solutions in multi-
objective Markov decision processes. In Helder Coelho, Rudi Studer, and
Michael Wooldridge, editors, ECAI, volume 215 of Frontiers in Artificial
Intelligence and Applications, pages 969–970. IOS Press, 2010.

[RSS+14] Diederik Marijn Roijers, Joris Scharpff, Matthijs T. J. Spaan, Frans A.
Oliehoek, Mathijs de Weerdt, and Shimon Whiteson. Bounded approxima-
tions for linear multi-objective planning under uncertainty. In Steve Chien,
Minh Binh Do, Alan Fern, and Wheeler Ruml, editors, ICAPS. AAAI,
2014.

[RWO13] Diederik M. Roijers, Shimon Whiteson, and Frans A. Oliehoek. Computing
convex coverage sets for multi-objective coordination graphs. In Patrice
Perny, Marc Pirlot, and Alexis Tsoukiàs, editors, ADT, volume 8176 of
Lecture Notes in Computer Science, pages 309–323. Springer, 2013.

[RWO14] Diederik M. Roijers, Shimon Whiteson, and Frans A. Oliehoek. Linear
support for multi-objective coordination graphs. In Proceedings of the
2014 International Conference on Autonomous Agents and Multi-agent
Systems, AAMAS ’14, pages 1297–1304, Richland, SC, 2014. International
Foundation for Autonomous Agents and Multiagent Systems.

24



183.0

184.0

185.0

186.0

187.0

188.0

189.0

252.5 253.0 253.5 254.0 254.5 255.0 255.5 256.0 256.5 257.0

vnew,↓

v̄new

+

+

+

+

+
++

+

++

+
++

+
++

+++

++++

+++

+++

+

+

+

+
+

+

+++

+
+++

+

+++

+
+++

Figure 7: Approximation of the Pareto front for the reward in state new.

[Ser79] R. F. Serfozo. An equivalence between continuous and discrete time Markov
decision processes. Operations Research, 27(3):616–620, 1979.

[Sha53] L. S. Shapley. Stochastic games. Proceedings of the National Academy of
Sciences, 39:1095–1100, 1953.

[SL73] Jay K. Satia and Roy E. Lave. Markovian decision processes with uncertain
transition probabilities. Operations Research, 21(3):728–740, 1973.

[WdJ07] M.A. Wiering and E.D. de Jong. Computing optimal stationary policies
for multi-objective Markov decision processes. In ADPRL 2007, IEEE
International Symposium on Approximate Dynamic Programming and
Reinforcement Learning, pages 158–165, April 2007.

[WE94] Chelsea C. White and Hany K. Eldeib. Markov decision processes with
imprecise transition probabilities. Operations Research, 42(4):739–749,
1994.

[Whi82] D.J White. Multi-objective infinite-horizon discounted Markov decision
processes. Journal of Mathematical Analysis and Applications, 89(2):639 –
647, 1982.

[WKR13] Wolfram Wiesemann, Daniel Kuhn, and Berç Rustem. Robust Markov
decision processes. Math. Oper. Res., 38(1):153–183, 2013.

25



855.0

860.0

865.0

870.0

875.0

880.0

885.0

890.0

1190.0 1195.0 1200.0 1205.0 1210.0 1215.0 1220.0

v∑,↓

v̄∑

++++
+++

+
+

++
++ +++

++++++++++

+

++
+

++

+

++
++

+
+++

+++
++++ ++++++

+++++++++++++++++++++++++++++++++++++++++++++
++++++++++++++++++++++++++++++++++

++++++++++++++++++++++++++++++++++++++++++++

+
+

++
+

+

++++

+++++++++++

++++

+++++++++++

+++++++

++

++++++

+++++

++++

+

++

++++++++

++++++

+
++

+++
+++++++++

++++
++++

++++
++++

++
++++

++++++++++++++++++++++++++++++++++++++++++

++++++

++

++++++++++++++++++++++
++++

++++

++++++++++++
++++

+
++++++++++++++++++

+++

+

++

++++++++++++++++++++++++++++++

+++++++

++++++++

+++++++++++

+++++++++++++++++++++++++++++++++++++

++++

++++++++++++

+++++++

+

++

+

+++++
+++++++

+++

+++++

+

+

+++++++

+++

++++
+++++++

+ +
++++

+++++++
+++++++

+

+

+

++

+++++++++++

+

++

+

+

+

++

+++++++++++++

++++++++

+

+++

+

+

+

+++

++

+++++

+++++++

++++++

++
++++

++
+

+++
++

++++++++++
++

++

++++

+++++++
+++++

+
+++

+

++++

++

+++

++++++

++++++++++++++++

++++

+

+++
+++

+

+++++

++++

+++++
+++

+++
++++++

+++++++ +++
++++++

+++++++

+
+ +

++++ +
+++

++

++++

+
+ +

+ +
++

++

++

+

++++

+
+

+

+++++

++++++++++++

++++++++++++++++++++++

+++++

++++++

++++

+

++++

+

+

+++

+

+

++

++++

++

++++++++

+++++++++++++

+

++

+++

+++++++

+

+++
+

+

+

+

+

++

+++
+

++

++

+

+
+++++++++

+++++

++++++++

+++++++++++++

+
++++++++++

++++++

+
+++

+

+

+++++++++++++++++++++++++
+++++

++++++

++++

++++++++++++++++++++++

+++++++++++++++++
++++++

++++

++++++++
+++++

+

++
+++

++

+

+
+

++

++
++

+++++++
++++++

+++

+++

++++++

++
+

++

+++

+++
+++++++

+

+
+

+

+

+
+

++
++

+

++

+
+

++

+
++

+

+
+

+++

+++++

+

+

+++++++++

+++++++

+

++++
+

++

++

++++

+

+++

+++++++++
++

+++

++++++++++++

+

+++
+

+

+

+

+

++

++++
+

++

++++++

+

+
++

++

++
+++

++++++
+++

+

+

+++

++

+++++

++++++++
++++

+

++
+++++++

+

+++

+
++

+++

++
++++++++

+

+
++++

+

+++

++

+
++++

+
+++++ +++++

+++ +
+++++

+++ ++
++ ++

+
+

+++++++++++

+

+++++++++++++++

++

+++++

++++++++++

+++++++++++++++

+++

++++++++

++
++

++
+

+++

+++
+++++

++++
++++

++
+++

++

+

++++++++++++

+

++++

++

+++++++++++

+

++++++++

+ +
++

+
+

+

++

+

+

+++

+++

+

+++

+++

+++

++

+++

+++

+

+++

++

+

+

++++

+

++++

+++

++++

+

++

++

+

+++

++

++

+
+

+++
++

++

++
++

+++++++
++++

+

+

++

++++++
++++

+
+++

+

+++++++++

+

+

+++

+

++++++++

++++

+

++++
++++++

+

+++++

+++

+++
+++++

+++

+

++
++

+

+++

++

++
++

+
+

++
+

+

+

++

+

++++++

+++

+

+++

+++++++

++++++

+

+++

+++++++

+

+++++

+++++

++++++++++

+

++

+++

+

+++

++

+++

+
++

++
+++

++
++

++
+++

++

+++
+++

+
++

+

+++++++

+

++

+++

+++++++++++

++++

+

++++
+++++++++

+

+++++

++++

++++
+++++++++

+++

+

++
+++

+

+++

++

++
+++

Figure 8: Approximation of the Pareto front for the sum of all state rewards.

26


